A CLASS OE EXACT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

M. A. Gol'dshtik

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 106-109, 1966

Let us consider a steady axisymmetric flow of a viscous incompressible fluid. It is described by the following equations in a cylindrical coordinate system:

$$
\begin{gathered}
v_{r} \frac{\partial v_{r}}{\partial r}+v_{z} \frac{\partial u_{r}}{\partial z}-\frac{v_{\varphi}{ }^{2}}{r}=-\frac{1}{\rho} \frac{\partial p}{\partial r}+v\left(\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r v_{r}}{\partial r}+\frac{\partial^{2} v_{r}}{\partial z^{2}}\right), \\
\frac{v_{r}}{r} \cdot \frac{\partial r v_{\varphi}}{\partial r}+\frac{v_{z}}{r} \frac{\partial r v_{\varphi}}{\partial z}=v\left(\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial r v_{\varphi}}{\partial r}+\frac{\partial^{2} v_{\varphi}}{\partial z^{2}}\right), \\
v_{r} \frac{\partial v_{z}}{\partial r}+v_{z} \frac{\partial v_{z}}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+v\left(\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial v_{z}}{\partial r}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right), \\
\frac{\partial r v_{r}}{\partial r}+\frac{\partial r v_{z}}{\partial z}=0 . \\
-20
\end{gathered}
$$

Fig. 1
We shall seek the solution in the form $v_{\varphi}=v_{\varphi}(r) \neq 0$, then $v_{\varphi}=$ $=\mathrm{V}_{\mathrm{r}}(\mathrm{r}), \mathrm{V}_{2}=\mathrm{zW}(\mathrm{r})$. Substituting these expressions in (1), we obtain

$$
\begin{gather*}
v_{r} \frac{d v_{r}}{d r}-\frac{v_{\varphi}^{2}}{r}=-\frac{1}{\rho} \frac{\partial p}{\partial r}+v \frac{d}{d r} \frac{1}{r} \frac{d r v_{r}}{d r}, \tag{2}\\
\frac{v_{r}}{r} \frac{d r v_{\varphi}}{d r}=v \frac{d}{d r} \frac{1}{r} \frac{d r v_{\varphi}}{d r}, \tag{3}\\
z v_{r} \frac{d w}{d r}+z w^{2}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+z \frac{v}{r} \frac{d}{d r} r \frac{d w}{d r}, \tag{4}\\
\frac{d r v_{r}}{d r}+r w=0 \tag{5}
\end{gather*}
$$

Equations (3) and (4) imply that $\rho^{-1} \partial p / \partial r=F(r)$, and $\rho^{-1} \partial p / \partial z=$ $=z f(r)$. We find from this that it is necessary to set

$$
\begin{equation*}
\frac{1}{\rho} \frac{\partial p}{\partial z}=-4 \delta a^{2} z, \quad \delta= \pm 1, \quad a=\text { const } . \tag{6}
\end{equation*}
$$

Substituting (6) in (4), we obtain

$$
\begin{equation*}
v_{r} \frac{d w}{d r}+w^{2}=4 \delta a^{2}+\frac{v}{r} \frac{d}{d r} r \frac{d w}{d r} \tag{7}
\end{equation*}
$$

Equations (5) and (7) form a closed system which can be solved independently of equations (2) and (3). The latter serve for determining the functions $p(r, z)$ and $v(r)$ after finding $v_{I}(r)$. Thus, v_{r} and w do not depend on whether the flow is twisted or not. We set

$$
r v_{r}=-v u, \quad x=a r^{2} / 2 v
$$

Then it is easy to reduce equation (5) to the form

$$
\begin{equation*}
w=a d u / d x . \tag{8}
\end{equation*}
$$

After simple transformations of equation (7), taking (8) into consideration, we obtain a single third-order equation not containing the parameter

$$
\begin{equation*}
2\left(x u^{\prime \prime}\right)^{\prime}=u^{\prime 2}-u u^{\prime \prime}-48 \tag{9}
\end{equation*}
$$

Here the primes indicate differentiation with respect to x. After in troducing the function $\Phi=\mathrm{rv}_{\varphi}$, equation (3) is transformed to the form

$$
\begin{equation*}
2 x \Phi^{\prime \prime}+u \Phi^{\prime}=0 \tag{10}
\end{equation*}
$$

We shall seek a one-parameter family of solutions of equation (9) depending on the parameter m and satisfying the conditions

$$
u(0)=0, \quad u^{\prime}(0)=-m, u^{\prime \prime}(0) \text { is bounded }
$$

It is not difficult to see that in order to satisfy the last condition, we must set

$$
\begin{equation*}
u^{\prime \prime}(0)=1 / 2\left(m^{2}-4 \delta\right) \tag{11}
\end{equation*}
$$

We shall consider two cases.
First case $\delta=1$. Exact solutions are found for five values of m . (The solutions for the cases $m=2$ and $m=4$ are known [1, 2]).

$$
\begin{gathered}
u \mp=2 x \quad(m= \pm 2) \\
u= \pm 2 x-6\left(1-e^{\mp x}\right) \quad(m= \pm 4) \\
u(\xi)=\xi+\sum_{n=1}^{\infty} \frac{\xi^{n}}{2^{k} n!}, \quad k=\frac{6 n-1+(-1)^{n}}{4} \quad(m=\infty) .
\end{gathered}
$$

The substitution $\xi=m x$ was introduced for the case $m \rightarrow \infty$. Equation (9) takes the form

$$
\begin{gathered}
2\left(\xi u^{\prime \prime}\right)^{\prime}=u^{\prime 2}-u u^{\prime \prime}-\frac{4}{m^{2}} \\
u(0)=0, u^{\prime}(0)=-1, u^{\prime \prime}(0)=\frac{1}{2}\left(1-\frac{4}{m^{2}}\right)
\end{gathered}
$$

The solutions for the remaining values of m were obtained numerically with the aid of a M-20 electronic computer. A family of integral curves is shown in Fig. 1. The curves were constructed to values of x^{*} corresponding to the last root of the function $u(x)$. When $x>x^{*}$, a sharp increase in the function $u(x)$ was observed in all cases up to values exceeding 10^{19}. The calculations carried out for the function $s(x)=u^{-1}$ showed that at some $x^{* * *}>x^{*}$, the function $s(x)$ changes sign. This means that the function $u(x)$ is without bounds in the neighborhood of the point $x^{* *}$.

Fig. 2
The integral curves corresponding to values of $m= \pm 2$ and $m=4$ are in a certain sense special, for on approaching these values, the corresponding curves approach the limit values, but not uniformly. For example, for any value $\varepsilon>0$, when $m=2 \pm e, u(x)$ will be larger than zero, beginning with some x, even though $u(x)=-2 x$ when $\mathrm{m}=2$. When $\mathrm{m} \leq-2$, the integral curves will have no roots. It is important to note that when $3.782<\mathrm{m}<4$, each curve has three roots, not counting $x=0$; when $-2<m<0$, each curve has two roots; and in the other cases, one root.

Second case $\delta=-1$. The integral curves form a monotonic family $\mathrm{u}_{\mathrm{k}}(\mathrm{x})>\mathrm{u}_{l}(\mathrm{x})$ if $\mathrm{k}<l$, where k and l are the respective values of the parameter m. When $m<0$, all curves have one root apiece; when $\mathrm{m}<0$, there are no roots.

Let us turn to equation (10). Its solution which satisfies the condition $\Psi(0)=0$ is of the form

$$
\begin{equation*}
\Phi(x)=\Phi^{\prime}(0) \int_{0}^{x} \exp \left(-\int_{0}^{x} \frac{u d x}{2 x}\right) d x \tag{12}
\end{equation*}
$$

$$
\Phi= \pm \Phi^{\prime}(0)\left(e^{ \pm x}-1\right) \text { at } \delta=1, \quad m= \pm 2
$$

(cont'd)
For other values of m, the function $I(x)=\Phi / \Phi^{\prime}(0)$ was computed simultaneously with $u(x)$.

We shall consider the following two problems for a hydrodynamic interpretation of the class of solutions of the Navier-Stokes equations we have found here.

Problem A. This work was done as a result of attempts to develop a model of the flow in the axial zone of a vortex chamber. The latter was a cylinder with a coaxial opening in one of the bottoms. Slits were cut along several generatrices of the cylinder through which fluid was introduced tangentially into the chamber. It was established [3] that an almost cylindrical region with radius r_{0} was formed in the vicinity of the axis of the chamber which was not entered by the initially introduced fluid. When liquid droplets were discharged into the air, the surface $r=r_{0}$ was a surface of discontinuity with an "air vortex" inside it. When air was discharged into this region, there was no discontinuity, but the surface $r=r_{0}$ remained impermeable to the main flow. Although the flow in the region $r>I_{0}$ could be described approximately with the aid of the scheme for an ideal fluid, no theoretical model has been developed as yet for the region $r<r_{0}$, where there are complicated secondary flows.

As established in reference [3], the axial speed v_{Z} varies almost linearly along the surface $\mathrm{r}=\mathrm{r}_{0}$ on which $\mathrm{v}_{\mathrm{r}}=0 ; \mathrm{v}_{Z}=\mathrm{kz}$, and the tangential speed remains approximately constant $v_{\varphi}=v_{0}$ along the surface $\mathrm{r}=\mathrm{r}_{0}$ on which $\mathrm{v}_{\mathrm{r}}=0$.

These special characteristics of flow in a vortex chamber provide a basis for attempting to construct the following model of flow in the region $\mathrm{r}<\mathrm{r}_{0}$. We consider a semi-infinite pipe with radius r_{0} and seek motion of a viscous fluid satisfying the conditions

$$
\begin{gather*}
v_{r}=0, \quad v_{z}=k z, \quad v_{\varphi}=v_{0} \\
\text { at } r=r_{0} ; \quad v_{z}=0 \quad \text { when } z=0, \\
v_{r}=v_{\varphi}=0, \quad v_{z}<\text { const } \quad \text { when } r=0 . \tag{13}
\end{gather*}
$$

No conditions at infinity or no-slip conditions at the end $z=0$ are specified. The latter can be justified by the fact that we are considering either flow outside the end boundary layer or a symmetric vortex chamber with outlets in both bottoms so that the center plane in such a chamber will be impermeable, but "absolutely smooth," and the no-slip conditions are replaced by the symmetry conditions

$$
\begin{align*}
& v_{r}(r, z)=v_{r}(r,-z), \quad v_{\varphi}(r, z)=v_{\varphi}, \\
& (r,-z), \quad v_{z}(r, z)=-v_{z}(r,-z) . \tag{14}
\end{align*}
$$

We shall attempt to subordinate the solutions of equation (9) to conditions (13) and (14) by suitable choice of the parameter m . It is obvious that all conditions, except $w\left(r_{0}\right)=k$ and $v\left(r_{0}\right)=r_{0}$, are automatically satisfied. Let $x_{0}=1 / 2 \mathrm{ar}_{0}{ }^{2} / \mathrm{v}$ be some root of the function $u(x)$ and $N=u^{\prime}\left(x_{0}\right)$. The condition $w\left(r_{0}\right)$ together with (8) leads to the relationship $a N=k$; consequently,

$$
\begin{equation*}
a=\frac{2 v x_{0}}{r_{0}^{2}}, \quad R_{\lambda}=\frac{k r_{0}^{2}}{v}=2 x_{0} N . \tag{15}
\end{equation*}
$$

Here R_{1} is the Reynolds number characteristic of problem A. The
m. Thus, we can construct the relationship $R_{1}(m)$ which is shown in Fig. 2. The function $R_{1}(m)$ consists of seven branches which correspond to the following values of the parameters:

Branch	1	2	3	4	5	6	7
$\delta=$	1	1	1	1	1	1	-1
$N=$	2	1	3	1	2	1	1
Interval	$(-2,0)$	$(0,2)$	$(2,4)$	$(3.782, \infty)$	$(3.782,4)$	$(-2,0)$	$(0, \infty)$

Branches 1, 2, and 3 are constructed on scale (1) in the figure and the remaining branches on scale (2). Negative values of R_{1} correspond to values of $k<0$. The most characteristic property of the constructed solutions can be seen in Fig. 2-their lack of identity. With values $-\infty<\mathrm{R}_{1}<10.2$, there are two solutions: in the interval $10.2<$ $<R_{1}<142$, problem A has no solutions of the given class. When $142<R_{1}<731$, there are again two solutions, and, finally, when $\mathrm{R}_{1}>731$, the number of solutions reaches four. Fig. 3 shows curves of the dimensionless function $W=W_{1}^{12} / \bar{\nu}$ versus r / r_{0} corresponding to the value $\mathrm{R}_{1}=775$ where the problem has four solutions. The calculations were carried out on the basis of the equalities

$$
\begin{gathered}
r / r_{0}=\sqrt{x / x_{0}}, \quad w r_{0}^{2} / v=2 x_{0} u . \\
\hline \\
\hline
\end{gathered}
$$

The latter is a consequence of (8).
The existence of two solutions when $\mathrm{R}_{1}=0$ is wholly logical from the physical standpoint if we consider the method for computing R_{1}. The fact is that movement with $N=0$ can be given a dual interpretation. In the first place, it can be regarded as independent movement in a pipe with a fixed wall. This case corresponds to the value $m=0$ and is characterized by the fluid at rest. In the second place, the given flow can be regarded as representing a component of the flow with $\mathrm{m}=3.782$ and $\mathrm{R}_{1}=775$ and developing within the region $\mathrm{r}<\mathrm{r}^{*}$ (the dashed line of Fig. 3). If the surface $r=r^{*}$ on which $v_{r}=v_{z}=0$ is replaced by a solid wall, then within the region $r \leq r *$, the fluid should be physically at rest; if this is not done, there should be motion since $d w / d r \neq 0$ when $r=r^{*}$, and tangential forces of the extemal part of the flow will act on the fluid in the region $r \leq r^{*}$.

Motion of the fluid in the pipe was caused by the drag effect of the wall, thus, only those solutions of equation (9) that satisfy the condition $\mathrm{dw} / \mathrm{dr}>0$ when $\mathrm{r}=\mathrm{r}_{0}$ can be solutions to problem A . In accordance with this requirement, a part of branch 4 in Fig. 2 for values $3.782<\mathrm{m}<3.92$ should be discarded. Then problem A will have a unique solution corresponding to branch 7 on the interval $0<$ $<R_{1}<8.5$ We note that these solutions correspond to motion with a positive pressure gradient $\partial p / \partial z>0$. It is interesting to note that all four types of motion shown in Fig. 3 have been observed experimental ly, under different conditions, of course.

Problem B. Let us consider a semi-infinite pipe with radius r_{0} with a fized porous wall. Let a fluid be injected through the lateral surface of the pipe uniformly along its entire length at an injection velocity of $\mathrm{v}_{r_{0}}=-\mathrm{In}_{0} / \mathrm{r}_{0}$. If we again do not specify a condition of attachment at the end, but require that $v_{Z}(r, 0)=0$, the problem is reduced to seeking those solutions of equation (9) which satisfy the conditions $u(0)=0 ; u^{\prime}(0)$ is bounded; $u\left(x_{0}\right)=u_{0}$, where x_{0} is the root of the function $u^{\prime}(x)$. The dimensionless parameter $u_{0}=-\mathrm{I}_{0} \mathrm{~V}_{\mathrm{r}_{0}} / \nu$ plays the role of the Reynolds number characteristic of problem $B_{\text {. Positive values }}$ of u_{0} correspond to injection of fluid into the pipe and negative values, curtion of flotid from the nine. The relationshio $R_{n}=1 n_{n}(m)$ is shown in

Fig. 4. If we require that $\mathrm{v}_{\mathrm{Z}} \geq 0$, then when $\mathrm{R}_{2} \geq 0$, problem B will have a unique solution corresponding to negative values of m.

REFERENCES

1. J. Ackeret, Über exakte Lösungen der Stokes-Navier-Gleichungen," Z. angew. Math. und Phys., no. 3, 1952.
2. R, D. Sullivan, "A two-cell vortex solution of the Navier-Stokes equations," J. Aerospace Sci., vol. 26, no. 11, p. 767-768, 1959.
3. M. A. Gol'dshtik, A. K. Leont'ev, and I. I. Paleev, "Aerodynamics of a vortex chamber," Teploenergetika, no. 2, 1961.

8 April 1964
Novosibirsk

