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Let us consider a s teady ax i symmet r i e  flow of  a viscous i ncom-  

pressible  fluid. It is described by the  fol lowing equat ions in a cy l i n -  
d r i ca l  coordinate  system: 

Ova. O~ r %~ t ~p , ( 0  t Or~ r O~vr'~ 
v~ ~-r + vz  Oz r p ~-; T ~. Or 7 Or + Oz~/ ' 

v~ Or% v z O r %  ( 0 t O r %  0~%~ 

r . Or +- ~ Oz = ~ _ - g i - v ) - - ~ - + ~ - z ~ /  ' 

Ov z Ov z t Op t 0 Ov z O~vz~ 
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We shall seek the Solution in the form v~ = v~o(r) ~ O, then v r = 

= vr(r), vz = zw(r). Substituting the~e expressions in (I), we obtain 

dv r v~ ~ t Op d i d ry  r 
v~ dr r "~" - -  -p ~ + v dr  r d r  , (2) 

Vr d r %  d t d r v ,  
r d r - - ~  dr r dr ' (3) 

dw t Op v d dw 
ZVr-~-r + zwZ = - -  -~-g~z + Z f -d~r r..-~-r , (4) 

dry  r 
dr  + r w = O .  (5) 

Equations (3) and (4) i m p l y  tha t  p '10p /0r  = F(r), and p-1Op/0z = 

= zf(r) .  We find from this that  i t  is necessary to set 

i ap  
p O z  - -  - -  4 8 a ~ z '  8 = -4- 1, a = e o n s t .  ( 6 )  

Substi tuting (6) in  (4), we ob ta in  

dw v d dw 
Vr - ~ "  + w ~ = 46a ~ "4- 7 - ~  r -~r"  (7 )  

Equations (5) and (7) form a closed system which can be solved 

independen t ly  of  equat ions (2) and (a). The  la t t e r  serve for d e t e r m i n -  

ing the functions p(r, z) and v(r) after  finding Vr(r). Thus, v r and w do 

not depend on whether  the flow is twisted or not. We set 

rv  r = - -  vu ,  x =  ar ~ 1 2 v .  

Then i t  is easy to reduce equat ion  (5) to the form 

w = adu / d x .  (8) 

After s imp le  t ransformations of  equa t ion  (7), t ak ing  (8) into 

considerat ion,  we obta in  a s ingle  th i rd-order  equa t ion  not con ta in ing  

the pa rame te r  

2 (xu") '  = u '2 - -  u u "  - -  46. (9) 

Here the pr imes  i nd i ca t e  d i f fe ren t ia t ion  with respect  to x. After in 

t roducing the function �9 = rye ,  equat ion (3) is t ransformed to the 

form 

2 z r  + u@' = 0. (10) 

We shall  seek a o n e - p a r a m e t e r  fami ly  of  solutions of  equat ion 

(9) depending on the paramete r  m and sat isfying the condit ions 

u(O) = O, u'(O) = - -  m, u"(O)  is bounded 

It is not d i f f icul t  to see that  in order to satisfy the las t  condRion, 

we must  set 

u "  (0) = l/2 (rn ~ - -  46). (11) 

We shall  consider two cases. 
First case 5 = 1. Exact solutions are found for f ive values of  m.  

(The solutions for the cases m = 2 and m = 4 are known [1, 2]). 

u T = 2 x  ( m =  + 2 )  

u = :k  2x - -  6 (t - -  e ~:~:) (m = :k4) 

~n 6n - -  I + (--1) ~ 
u (~) = ~ + 2kn{ , k = 4 (m = co) 

n = l  

The substi tut ion ~ = mx was in t roduced for the case m ~ ~. Equa- 

t ion (9) takes  the form 

4 
2 (~u")' = u'2 - -  u~" - - - ~  , 

u ( 0 )  = O,  u '  ( 0 )  = - -  t ,  u "  (0) = ~  t - -  " -~  . 

The solutions for the r ema in ing  values  of  m were ob ta ined  numer i -  

c a l l y  with the aid of  a M-20 elecrxonic computer .  A fami ly  of  in-  
t eg ra l  curves is shown in Fig. 1. The  curves were constructed to values  
of  x* corresponding to the Iast root of the function u(x). When x > x*, 
a sharp increase  in the function u(x) was observed in a l i  cases up to 

values  exceed ing  1019. The ca lcu la t ions  carr ied  out  for the function 

s(x) = u-1 showed tha t  at some x** > x*, the function s(x) changes 
sign. This means tha t  the function u(x) is without  bounds in the ne igh-  

borhood of  the  point x**. 
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The  in tegra l  curves corresponding to va lues  of m = ~2 and m = 4 

are in a ce r ta in  sense s p e c i a l  for on approaching these values,  the 

corresponding curves approach the  l i m i t  values ,  but not uniformly.  

For example ,  for any va lue  e > 0, when m = 2 ~ e, u(x) wi l l  be l a r -  

ger than  zero, beg inn ing  with some x, even though u(x) = - 2 x  when 

m = 2. When m _< - 2 ,  the  in tegra l  curves wi l l  have  no roots. It is 

impor tan t  to note  tha t  when 3 .782  < m < 4, each  curve has three  

roots, not  count ing  x = 0: when --2 < m < 0, each  curve  has  two 

roots; and in the other cases, one root. 

Second case 5 = - 1 .  The  in tegra l  curves form a monoton ic  

f ami ly  Uk(X ) > u/(x) i f  k < l, where k and l are the respec t ive  values  

of  the pa ramete r  m.  When m < 0, a l l  curves have  one root ap iece ;  

when m < O, there  are no roots. 

Let us turn to equat ion  (10). Its solution which satisfies the condi-  

t ion  ~(0) = 0 is of the form 

0 0 
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gP = ::h @' (0)( e--x - -  t) at 6 = i ,  m = = h 2 .  (12) 
(cont 'd)  

For other values  of  m, the  function I(x) -- r  was computed  

s imul taneous ly  with u(x). 
We shall  consider the fol lowing two problems for a hydrodynamic  

in te rpre ta t ion  of  the class of solutions of  the Navier-Stokes  equat ions 

we have  found here.  
Problem A. This work was done as a resul t  of  a t tempts  to develop  

a mode1 of the flow in the ax ia l  zone of  a vortex chamber .  The l a t -  

ter  was a cy l inder  with a coax ia l  opening  in one of  the bot toms.  Silts 

were cut a long severaI  genera t r ices  of the cyl inder  through which 

fluid was introduced t a n g e n t i a l l y  into the chamber .  It was es tabl ished 

[3] tha t  an a lmost  cy l ind r i ca l  region with radius r 0 was formed in the 

v i c i n i t y  of  the axis of the chamber  which was not entered by the  in i -  
t i a l l y  introduced fluid. When l iqu id  droplets were discharged into the 

air, the surface r = r 0 was a surface of d iscont inui ty  with an "air  

vor tex"  ins ide  it. When air was discharged into this region,  there  was 

no discont inui ty ,  but the  surface r = r 0 r ema ined  i m p e r m e a b l e  to the  

m a i n  flow. Al though the flow in the region r > r 0 could  be described 
approx ima te ly  with the aid of  the scheme for an idea l  fluid, no theo-  

r e t i ca l  model  has been developed  as ye t  for the region r < r o, where 

there  are c o m p l i c a t e d  secondary flows. 

As es tabl ished in re ference  [3], the  ax ia l  speed v z var ies  a lmost  

l i nea r ly  a long the surface r = r 0 on which v r = 0; vz = kz, and the 

t angen t i a l  speed remains  app rox ima te ly  constant  v r  = v 0 along the 

surface r = r 0 on which v r = 0. 
These spec ia l  charac te r i s t ics  of  flow in a vor tex chamber  provide 

a basis for a t t empt ing  to construct  the following mode l  of  flow in the 

region r < r 0. We consider a s e m i - i n f i n i t e  pipe with radius r0 and 

seek mot ion  of  a viscous fluid sat isfying the condit ions 

V r ~ O~ Yz  ~ kZ,  ~4  ~ V 0 

at r = to; v z =  0 when z =  O, 

v r = % =  O, ~ z < c ~  w h e n r =  O. (13) 

No condit ions at inf in i ty  or no-s l ip  condit ions at the end z = 0 

are specif ied.  The  la t t e r  can  be just i f ied by the fact  that  we are con-  

s ider ing e i ther  flow outside the end boundary layer  or a symmet r i c  

vortex chamber  with out le ts  in both bot toms so tha t  the center  p lane  

in such a chamber  wi l l  be impe rmeab le ,  but "absolute ly  smooth," and 

the no-s l ip  condit ions ~ e  rep laced  by the  symmet ry  condit ions 

v ,  (, ' ,  z) = v r ( r ,  - z ) ,  % (~, z) = % ,  

( r ,  - - z ) ,  v~ (~, z) ~ - -  v z (~, - - z )  . 

i s1,~z, 

A 
-20g , o zoo 4 oo 

Fig. 3 

w 

Goo 8oo 

(14) 

We shal l  a t t empt  to subordinate the solutions of  equa t ion  (9) to 
condi t ions (13) and (14) by su i tab le  cho ice  of the  pa ramete r  m. It is 

obvious tha t  al l  condit ions,  excep t  w(r0) = k and v(r0) = re, are auto- 
m a t i c a i i y  sat isf ied.  Let x 0 = 1 /2  ar02/v be some root of the function 

u(x) and N = u'(x0). The condi t ion  w(r0) together  wi th  (8) leads  to the 

re la t ionship  aN = k; consequently,  

2~xo kro 2 
a R:~ -~ - '~" -=  2xoN (15) 

- -  r O  2 ' 

Here R t is the Reynolds number  charac te r i s t i c  of problem A. The  

m. Thus, we can construct the relationship R1(m ) which is shown in 

Fig. 2. The function R1(m ) consists of seven branches which corres- 

pond to the following values of the parameters: 

Branch t 2 3 4 5 6 7 
6 = ~. t t t t i - -1  
N = :  2 t 3 1 2 t 1 

Interval  (--2,0) (0, 2) (2, 4) (3.782, oo) (3.782,4) (--2,0) (0, oo) 

Branches 1, 2, and 3 are constructed on scale  (1) in  the figure and 

the r ema in ing  branches on sca le  (2). Nega t ive  values  of  R~ corres- 

pond to va lues  o f  k < 0. The most  charac te r i s t i c  property of  the con-  

structed solutions can  be seen in Fig. 2 - t h e i r  l a c k  of  ident i ty .  With 

va lues  -r  < RI < 10.2, there are two solutions: in the in terval  10.2 < 

< R I < 142, problem A has no solutions of the  g iven  class.  When 

142 < R I < 731, there  are again  two solutions, and, f inal ly ,  when 

R 1 > 731, the number  of  solutions reaches  four. Fig. 3 shows curves 

of  the d imensionless  function W = w ~  versus r / r  0 corresponding to 
the  va lue  R~ = 775 where the problem has four solutions. The ca l cu -  

la t ions  were carr ied out  on the basis o f  the equa l i t i es  

f i f o =  g x / xo, ~,ro~ l ~ = 2zou .  
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The  la t te r  is a consequence  of  (8). 
The ex i s t ence  of  two solutinns when R 1 = 0 is whol ly  l o g i c a l  from 

the physical  s tandpoint  i f  we consider the method  for comput ing  R r 

The  fact is that  m o v e m e n t  with N = 0 can be g iven  a dual  interpreta~ 

l ion.  In the first place,  i t  can be regarded as independent  m o v e m e n t  

in a pipe with a fixed wal l .  This case corresponds to the va lue  m = 0 

and is cha rac te r i zed  by the  fluid at rest. In the second place,  the 
g iven  flow can be regarded as represent ing a component  of  the flow 

with m = 3. 782 and R 1 = 775 and deve lop ing  within the region r < r* 

(the dashed l ine  of  Fig. 3). If the surface r = r* on which Vr = Vz = 0 
is replaced by a solid wail ,  then  within the  region r -< r*, the  fluid 
should be physica l !y  at  rest; i f  this is not done, there  should be mo-  

t ion since dw/dr  # 0 when r = r*, and t angen t i a l  forces of  the ex-  

te rna l  part of  the flow wi l l  act  on the fluid in the  region r _< r*. 

Motion of the fluid in the pipe was caused by the drag effect  of 

the  wall ,  thus, only those solutions of  equat ion (9) tha t  satisfy the 

condi t ion  dw/dr  > 0 when r = r0 can be soIutions to problem A. In 
accordance  with this  requirement ,  a part of branch 4 in Fig, 2 for 
values  3. 782 < m < 3 .92  should be discarded.  Then problem A wi l l  

have  a unique solution corresponding to branch 7 on the  in terval  0 < 
< R 1 < 8.5 We note that  these solutions correspond to mot ion  with a 

posi t ive  pressure gradient  8p/Oz > 0. It is interest ing to note  tha t  nil 
four types of mot ion  shown in Fig. 3 have  been observed e x p e r i m e n t a l -  

ly, under different  condit ions,  of course. 

th'oblem B. Let us consider a s e m i - i n f i n i t e  pipe with radius r 0 with 

a fized porous w a i l  Let a fluid be in j ec ted  through the  l a t e r a l  sur- 

face of  the pipe uni formly along its en t i re  l eng th  at  an In jec t ion  ve loc -  

i ty  of Vr 0 = - g u 0 / r  0. If  we again  do not specify a condi t ion of  a t t ach-  

men t  at  the  end, but require  tha t  vz(r,  0) = 0, the problem is reduced 

to seeking those solutions of equat ion  (9) which satisfy the condit ions 

u(0) = 0; u ' (0)  is bounded; u(x0) = u0, where x0 is the root of  the func- 

t ion  u'(x).  The  d imensionless  pa rame te r  a o = -roVro/U plays the ro le  

of  the Reynolds number  charac te r i s t i c  of problem B. Posi t ive values  

of  u0 correspond to in jec t ion  of fluid into the pipe and nega t ive  values,  
~ n o r ~ n  c~f f l n~d  f r n m  r b e  n~ne_ T h e .  r e ] a t i o n s h i n  R~ = u J m ~  i s  shown in 
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Fig. 4. If we require that v z _> 0, then when R~ >_ 0, problem B will 
have a unique solution corresponding to negative values of m. 
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